Two-dimensional semi-nonnegative matrix factorization for clustering
نویسندگان
چکیده
In this paper, we propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF. It overcomes the drawback of existing methods that seriously damage spatial information data by converting 2D to vectors in preprocessing step. particular, projection matrices are sought under guidance building representations, such is retained and projections enhanced goal clustering, which helps construct optimal directions. Moreover, exploit nonlinear structures manifold constructed projected subspace, adaptively updated according less afflicted with noise outliers thus more representative space. Hence, seeking projections, learning seamlessly integrated single model, mutually enhance other lead powerful representation. Comprehensive experimental results verify effectiveness TS-NMF comparison several state-of-the-art algorithms, suggests high potential proposed real world applications.
منابع مشابه
Tight Semi-Nonnegative Matrix Factorization
The nonnegative matrix factorization is a widely used, flexible matrix decomposition, finding applications in biology, image and signal processing and information retrieval, among other areas. Here we present a related matrix factorization. A multi-objective optimization problem finds conical combinations of templates that approximate a given data matrix. The templates are chosen so that as far...
متن کاملData Clustering with Semi-binary Nonnegative Matrix Factorization
Recently, a considerable growth of interest in using Nonnegative Matrix Factorization (NMF) for pattern classification and data clustering has been observed. For nonnegative data (observations, data items, feature vectors) many problems of partitional clustering can be modeled in terms of a matrix factorization into two groups of vectors: the nonnegative centroid vectors and the binary vectors ...
متن کاملSparse Nonnegative Matrix Factorization for Clustering
Properties of Nonnegative Matrix Factorization (NMF) as a clustering method are studied by relating its formulation to other methods such as K-means clustering. We show how interpreting the objective function of K-means as that of a lower rank approximation with special constraints allows comparisons between the constraints of NMF and K-means and provides the insight that some constraints can b...
متن کاملSymmetric Nonnegative Matrix Factorization for Graph Clustering
Nonnegative matrix factorization (NMF) provides a lower rank approximation of a nonnegative matrix, and has been successfully used as a clustering method. In this paper, we offer some conceptual understanding for the capabilities and shortcomings of NMF as a clustering method. Then, we propose Symmetric NMF (SymNMF) as a general framework for graph clustering, which inherits the advantages of N...
متن کاملDocument clustering using nonnegative matrix factorization
Amethodology for automatically identifying and clustering semantic features or topics in a heterogeneous text collection is presented. Textual data is encoded using a low rank nonnegative matrix factorization algorithm to retain natural data nonnegativity, thereby eliminating the need to use subtractive basis vector and encoding calculations present in other techniques such as principal compone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2022
ISSN: ['0020-0255', '1872-6291']
DOI: https://doi.org/10.1016/j.ins.2021.12.098